A REINVESTIGATION OF ALLOXAN-LIKE COMPOUNDS DERIVED FROM URIC ACID1

M. Poje and B. Ročić

Department of Organic Chemistry, University of Zagreb, Strossmayerov trg 14, 41000 Zagreb, Croatia, Yugoslavia

Summary: The structures of two isomeric intermediates in the oxidative conversion of uric acid $(\underline{1})$ to alloxan $(\underline{5})$ are revised and the compounds shown to be uric acid glycol $(\underline{3})$ and 5-hydroxy-pseudouric acid $(\underline{4})$, respectively.

Recently we showed that Biltz's formula $\underline{3}^2$ for the oxidation product of uric acid $(\underline{1})$ with bromine was inconsistent with spectral and degradative evidence and assigned the correct structure $\underline{2}$ by X-ray structure analysis¹. An extension of the foregoing revision indicated a possible alternative formulation of isomeric alloxan-like compounds. In view of the interest in the β -cytotoxic compounds derived from $\underline{1}^3$, the structure of these products has been reinvestigated.

The chlorination of $\underline{1}$ in acetic acid in the presence of an equimolar amount of water and subsequent work-up, according to Biltz's procedure⁴, afforded a product $C_5H_6N_4O_5$, m.p. 210° dec. Its IR spectrum, however, failed to show the absorptions characteristic of a primary amide, as expected for the originally assigned structure $\underline{4}$, but was consistent with the bicyclic structure $\underline{3}$: ν max (KBr) 3465(OH), 3350,3200,3120(NH),1735,1720,1705(CQ) cm⁻¹; UV spectrum⁵ λ max (H₂O) 199(ϵ 15520), sh 220(ϵ 6900), 250(ϵ 2590) nm. The extensive thermal dehydration eliminates the molecular ion from the mass spectrum⁶ of $\underline{3}$ giving rise to a M-18 peak at m/e 184. The structure $\underline{3}$ is also consistent with facile acid hydrolysis to alloxan ($\underline{5}$) and urea. Under appropriate conditions, however, the cleavage of the five-membered ring in $\underline{3}$ occurred affording the isomeric intermediate $\underline{4}$.

Compound $\underline{3}$ was dissolved in a minimal amount of water at 70° and evaporation under reduced pressure yielded crystalline $\underline{4}$ (38%), m.p. $133-4^{\circ}$ dec., which analyses for $C_5H_6N_4O_5 \cdot H_2O$. Removal of water of hydration by heating with an excess of acetic anhydride gave anhydrous $\underline{4}$ (90%) as fine yellow needles, $C_5H_6N_4O_5$, m.p. $185-6^{\circ}$ dec. IR (KBr), ν max $3480,3440\,(NH_2)$, $3460\,(OH)$, $3360,3250,3140\,(NH)$, $1760,1725\,(CO)$, $1650,1630\,(CONH_2)\,cm^{-1}$; UV spectrum⁵ λ max (H_2O) 199(ϵ 17120), sh220(ϵ 8080) nm. The mass spectrum⁷ gave supporting evidence for the structure $\underline{4}$. Besides the thermal dehydration and subsequent fragmentation similar to that in $\underline{3}$, two complemental peaks were observed at m/e 142 and 60, corresponding to McLafferty-rearrangement ions 5 and urea.

The reaction of $\underline{5}$ with urea which has been described previously⁸, yielded a product identical in all respects with $\underline{4}$. The ease of formation of the addition product may be due to stabilization by internal hydrogen bonding in outcome $\underline{4}$. which is absent from the parent gem-diol $\underline{5}^9$. On being heated, or in aqueous solution, an equilibrium $\underline{4} \not\equiv \underline{5} + \text{urea}$ is likely to be set up, and the ready disproportionation into original components is consistent with reactions reported earlier⁸. All attempts to achieve the re-cyclisation $\underline{4} \rightarrow \underline{3}$ remained unsuccessful. A bromine-catalysed rearrangement, however, takes place in aqueous solutions of $\underline{3}$ and $\underline{4}$ to give the third constitutional isomer $\underline{2}$ (50-60%) which no longer possesses an alloxan-like structure¹.

The results provide a basis for further studies relating to $in\ vivo$ degradation of $\underline{1}$ and we hope to report the ongoing work in this area in due course¹⁰.

REFERENCES AND NOTES

- Oxidation of Uric Acid. II. For part I, see M. Poje, E. F. Paulus, and B. Ročić, J. Org. Chem., in press.
- 2. H. Biltz and M. Heyn, Chem. Ber. 45, 1677 (1912); ibid. 47, 459 (1914).
- 3. M. Poje and B. Ročić, Experientia, in press.
- 4. H. Biltz and M. Heyn, Ann. Chem. $\frac{413}{100}$, 7 (1916). Dimethyl ether of $\frac{3}{100}$ prepared by chlorination of 1 in methanol had vmax(KBr) 3320,3200,3090,1750,1715 cm⁻¹.
- 5. It is noteworthy that UV spectra of $\frac{3}{2}$ and $\frac{4}{2}$ show considerable resemblance to the spectra of primary oxidation products of 1-methyluric acid obtained by the action of horse radish peroxidase. K. G. Paul and Y. Avi-Dor, *Acta Chem. Scand.* 8, 637 (1954).
- 6. MS (200°) , m/e (rel intensity) 184(4),156(1),141(12),129(9),114(15),113(17),98(6),86(17),85(4),70(15),69(4),60(10),55(12),54(5),44(55),43(100),42(46); metastable peaks m/e <math>108.1,90.6 $|184 \rightarrow 141 \rightarrow 113|$; 68.1 $|141 \rightarrow 98|$.
- 7. MS m/e (rel intensity) 184(2), 156(1), 142(7), 141(1), 129(1), 114(4), 113(5), 86(7), 71(4), 70(6), 69(3), 60(15), 55(3), 54(2), 44(100), 43(54), 42(15); metastable peaks m/e 17.9 $|202 \rightarrow 60|$; $90.6 |141 \rightarrow 113|$; $64.9 |114 \rightarrow 86|$.
- 8. R. Behrend and R. Zieger, Ann. Chem. $\underline{410}$, 337 (1915). We employed a slightly modified procedure: on admixing saturated solutions of $\underline{5}$ and 2 mol.equiv. of urea at 50° , heat is evolved, and crystalline $\underline{4}$ separated in a 60% yield.
- 9. An analoguous behaviour is observed in the α -halogenated aldehydes which also form stable gem-diols: H.E.Zaugg and W.B.Martin, Org. Reactions 14,52 (1965).
- 10. This work was supported in part by the Institute for Diabetes, Endocrinology, and Metabolic Diseases "Vuk Vrhovac", Medical Faculty, University of Zagreb.